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Abstract  

This paper d e a l s  with t h e  block encoding of d i s c r e t e ,  nemoryless 

sources  with equiprobable outputs  s u b j e c t  t o  a f i d e l i t y  c r i t e r e o n .  

encoder i s  assumed t o  be de t e rmin i s t i c  and a lower bound i s  der ived  on 

The 

t h e  amount of computational work r e q u i x d  t o  encode such sources  as a 

func t ion  of t h e  code rate and f i d e l i t y  of t h e  encoding. 

given t o  show t h a t  t h e  bound cannot be s u b s t a n t i a l l y  impsoved. 

bounds apply p r imar i ly  t o  sources  and d i s t o r t i o n  measures which are such 

t h a t  t he  minimum d i s t o r t i o n  given by t h e  r~.te--distoi*tio11 bound is  not  

achievable  with a f i n i t e  block length ,  de t e rmin i s t i c  encoder. 

An example is  

These 



1. In t roduct ion  

'Codes a r e  used both for t h e  encoding of sources  with a f i d e l i t y  

1 c r i t e r i o n  and f o r  e r ror -cor rec t ion .  I n  the  case of e r ro r - co r rec t ion ,  

decoders are usua l ly  far  more complex than encoders while i n  t h e  soume 

'encoding case t h e  r eve r se  i s  t r u e .  

encoders which r ep resen t  source outputs  with some d i s t o r t i o n  and a t  re- 

duced code r a t e  r equ i r e  a many-to-one map from source sequences t o  code 

words, and t h i s  map is p o t e n t i a l l y  much more complex than t h e  one-to-one 

This d i f f e rence  e x i s t s  because source 

map r e a l i z e d  by encoders f o r  e r ro r - co r rec t ing  codes. 

t h i s  paper is t o  shed l i g h t  on the  source encoding problem by in t roducing  

t o  it t h e  complexity measure c a l l e d  "computational work" which has been 

success fu l ly  appl ied  t o  t h e  decoding problern 

The ob jec t ive  o f  

2 

I n  t h i s  s e c t i o n  w e  def ine  "computational work ," t he  source encoding 

problem and introduce models f o r  encoding machines. In  Sect ion 2 a lower 

bound t o  t h e  computational work requi red  t o  source encode a d i s c r e t e ,  memory- 

l e s s  source (DMS) is  der ived and a high rate encoder €or a b inary  source 

i s  exh ib i t ed  which encodes with a work near  t h e  minimum. I n  the  concluding 

sec t ion  t h e  problems assoc ia ted  with t h e  use of decodars f o r  e r ror -cor rec-  

t i n g  codes as source encoders are discussed. 

L e t  t h e  source produce N d i g i t s  from a s o m c e  alphabet  Z , namely, 
-a d a 

the  vec to r  z = ( z L , - .  ,z . The source encoder maps z i n t o  y = (yl,* >yH) N 
A 2 

where yi E: Y , a second alphabet.  I n  genera l ,  t h e  map from z t o  y i s  

many-to-one and as  a r e s u l t  some d i s t o r t i o n  i n  t h e  r ep resen ta t ion  of 

introduced.. We measure t h i s  d i s t o r t i o n  with a func t ion  d ( , )  which 

A 

z is 
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we assume has t h e  fol lowing properties":  

0 < d(z ,y)  2 E 2 ,  y E Y 
I 

d(z ,y(z) )  = 0 some y(z)  E Y 
3 Then, t h e  d i s t o r t i o n  between z and y" , d($, i.s def ined  by 

- -  . 

(1) 

- 
The map from z t o  could be s t o c h a s t i c  s i n c e  y could be  t h e  output  

- 
of a noisy channel when z i s  t h e  input .  

1 Shannon has  shown f o r  the  DMS t h a t  t h e  minimum average d i s t o r t i o n  D 

and t h e  source rate R must s a t i s f y  the  inequa l i ty  

R - .C K(D) ( 3 )  

where R(D) is a r a t e - d i s t o r t i o n  func t ion  def ined i n  terms of t h e  d i s t o r t i o n  

measure d(  ,) e Since Shannon's encoders could contain a s t o c h a s t i c  element, 

it is s u r p r i s i n g  t h a t  (as Goblick 

map from z t o  7 is de te rmin i s t i c .  P i l c  has  der ived b o u d s  on the  r a t e  

4 has shown) the  sm.e r e s u l t s  ho ld  when t h e  

5 - 

of approach t o  t h e  R(D)  bound as a fundt ion  of encoding l e n g t h  N and 

f inds  t h a t  s t o c h a s t i c  encoders o f f e r  a small advantage over d e t e r m i n i s t i c  

encoders.  

The ana lys i s  t h a t  we s h d l  do i s  l i m i t e d  by t e c h n i c a l  cons idera t ions  

t o  d e t e m i n i s t i c  source encoders;  

encoders which can now be defined by a many-to-one func t ion  

where if ZEZ and ycY then  

Therefore ,  w e  l i m i t  OUXL a t t e n t i o n  t o  such 

N f:ZN -). Y 
- N  - N  

- 
y = f(z) . (4) 

- 5 Following Goblick4 and Pilc , i f  t h e r e  are M encoder outpu.bLs y t h e  

encoder rate R is defined b37 
log2 

fi = --- 
N 

( 5 )  

f iPinkston3 has shorn that t h e r e  is no l o s s  of gene ra l i t y  i n  these assurcpt-ions. 
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The source outputs  are assumed t o  be s t a t i s t i c a l l y  independent 

d i s t r i b u t e d  according t o  t h e  d i s t r i b u t i o n  1 e - i e - l Z  

Suppose t h a t  f has  R i npu t s  which are equal  t o  output  

(Q ( i )  

and i d e n t i c a l l y  

I .  

and l e t  t h e s e  

where N is  a permutation of  (1, 2, --, N) and f(z15 --, 2,) = (yl, --s yN) * 

L e t  P be t h e  s e t  of permutations such t h a t  i f  BEP,  yB(l) = zl, --, yW(a) = z  . 
Then, w e  de f ine  t h e  average d i s t o r t i o n  D a s soc ia t ed  with f by 

where t h e  expec ta t ion  i s  taken over  t h e  source ensemble. While t h i s  d e f i n i t i o n  

is s l i g h t l y  d i f f e r e n t  from t h a t  commonly used, t h e  r a t e - d i s t o r t i o n  func t ion  

s t i l l  app l i e s .  

N 
. The complexity of an encoding func t ion  f :  Z -> YN w i l l  ncd be def ined.  

L e t  h :  Z +- (0 ,  l I m  be a 1-1 i n t o  map of  t he  s e t  Z and l e t  2: Y + { O ,  l I n  

be a 1-1 . i n to  map of Y . Then, fs: [IO, l Im3  -+ [ i o ,  l}nlN obta ined  from 

f by composition with func t ions  h and R , is a b inary  r ep resen ta t ion  of f a 

Given a binary  func t ion  g: (0, 1IP + (0, l I g  w e  s ay  t h a t  g is com- 

puted by a combinational machine (a  d i r e c t e d ,  a c y c l i c  graph) with p r imi t ives  

s2 

of g and produces t h e  value o f .  g a t  s p e c i f i e d  po in t s  i n  t h e  machine. 

The p r imi t ives  

sist of t h e  2-input AMD, the 2-input OR and t h e  NOT func t ions ,  f o r  example, 

( s e t  of Boolean func t ions )  i f  such a machine accepts  as inpu t s  t h e  v a r i a b l e s  

S2 are t h e  b a s i c  s e t  o f  opera t ions  permissible  and might con- 

If no element of R has more than  r i n p u t s ,  S2 is s a i d  t o  have fan-in 

of r . The,combinational complexity of g , C,(g) is t h e  sinallest numbei. 

of pr imi t ives  i n  any combinational machine r e a l i z i n g  g ., We extend t h e  

d e f i n i t i o n  t o  non-blnary encoding func t ions  f by def in ing  C Q ( f )  as t h e  
_I_- 

&.- “tach cccurence of z and y may have a d i f f e r e n t  encoding func t ion  h OF R. 
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- - . f  minimum of C,(f$:) over  a l l  encodings of z and y .  

A s e q u e n t i a l  machine S = < S, I, 6 ,  A ,  0 ;  T > has  a f i n i t e  s ta te  

s e t  S , i npu t  a lphabet  I and output  a lphabet  0 a It executes  T cyc les  

and has  state t r a n s i t i o n  func t ion  6: SXI -+ S and output  func t ion  X :  S +- 0 . 
Then, Cnfs(S) is def ined  as t h e  combinational complexity of 6 ,  X sub jec t  

t o  t h e  r e s t r i c t i o n  t h a t  each occurence of t h e  set  be given the  same en- S 

= X ,  ( 1 )  coding. S is  s a i d  t o  compute >.(n): S x I"-'+ 0 as def ined  by: h 

D (7 )  

Then, i f  CQ(h (1) -- A(t)) is t h e  combinational cornplexity of t h e  func t ions  

computed by S then  it is e a s i l y  shown2"that 

N N  Theorem 1 L e t  f :  2 + Y be computed by S = <S, I, 6, A, 0 ;  T> e 

Then, 

i n e q u a l i t y  fol lows.  This theorem can be zxtended t o  a c o l l e c t i o n  of i n t e r -  

connected sequential .  machines which compute f ~ 

We cal l  W = CQsz(S) T t h e  computational work performed by S because 

it is t h e  equivalent number of l o g i c a l  opera t ions  which S executes .  Further-  

more, it can be shown t h a t  C $:(SI is proportional t o  t h e  s torage  capaci ty  6 
n 

"Each occurence of Z and Y may have  a d i f f e r e n t  encoding funct i .on.  
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of S when S c o n s i s t s  of a machine with a l a r g e  amount of random access 

or t ape  s torage .  f 

is  poss ib l e  pnly i f  an amount of computational work a t  l e a s t  as l a r g e  as 

Cn(f)  i s  completed. We show i n  t h e  next  s e c t i o n  t h a t  C Q ( f )  must be l a r g e  

f o r  many sources  and d i s t o r t i o n  measures if t h e  soume  is t o  be encoded 

The theorem then states t h a t  a source encoding with 

a t  rate R and d i s t o r t i o n  D nea r  t h a t '  given by t h e  

2 ,  Bounds on Computational Work. 

We now develop a lower bound t o  Cn(f)  . Let n 

permutation i n  (6 ) .  Then, i f  f i s  dependent on N' 

~ 2 %  and 

C*(f) = Cn(""f) 2 N' - R 

rate d i s t o r t i o n  fukc t ion .  

be t h e  minimizing 

of i t s  i n p u t s ,  so is  

where r is t h e  fan-in of Sl e This fol lows because 

t o  two inpu t s  (outputs  can only be connected toge the r  

(1)  no output  i's equal  

through l o g i c  elements) 

(2 )  if some input  va r i ab le  of ' f 

is one of  t h e  9. i npu t s  and ( 3 )  t h e  N ' -  11 remaining i n p u t s  a r e  encoded 

i n t o  binary va r i ab le s  and 

is equal  t o  an output  v a r i a l e ,  t h i s  i npu t  

f$: .must depend on at least one of the  b inary  va r i ab le s  

fop each of t h e  inpu t s  t o  f . 
l o g i c  element and each l o g i c  element has a t  most r inpu t s .  The next  s t e p  

is  t o  lower bound N '  - R e 

These b inary  inputs  must be appl ied  t o  a 

We observe t h a t  t h e  number o f  po in t s  i n  ZN on which f depends, namely, 

lZIN ', must  be a t  least as l a rge  as 

fore , 

M, t h e  s i z e  of t h e  range of f Tnere -  

N '  > - N R / ~ o ~ J z I  e (11) 

- 
Write z = (?, w> where v r ep resen t s  the  first R conponents of 

z and the  remaining N-R cornponents. Then, ns:f(z) can be w r i t t e n  as 

(7,  f v ( w ) )  I Let Ell(7) be the  s i z e  oE t h e  range of  f-(i7) . Then, 

- 

V 
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Also, i f  t h e  source i s  a s t a t i s t i c a l l y  independent l e t t e r  s o w c e ,  t h e  

p r o b a b i l i t y  p(Z) = pv(V)pw(G) and s i n c e  d(zi3 yi) 2 0 w e  have 

We ca l l  

then pv(V) = lZl-R and 

D(J) = EW{d(Ci, f - ( W ) ) )  and i f  t h e  source ou tpu t s  are equiprobable ,  
V 

I n  Appendix A it is shown t h a t  t h e r e  exists ii v such t h a t  

where M(T) and D(F) are the  number of code words and average d i s t o r t i o n  

assoc ia ted  with f-: ZNeR -+ Y N-R . 
V 

Taking t h e  base 2 logari thm of both sides of (ISa) and l e t t i n g  

R(T)  (J-og2M(T))/(N-E) w e  have 
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(17) 

- In  Appendix B it i s  shown t h a t  i f  R(D) has a continuous first de r iva t ive  

then t h e  left-hand func t ion  is decreasing i n  inc reas ing  R ( 7 )  and R(G) 0 

i f  t h e  following i n e q u a l i t y  is s a t i s f i e d :  

R (1 - 2D/D )R - 1 / N  max max (19) 

i s  t h e  maximum average d i s t o r t i o n  and R = log21Zl is t h e  
max 

where D 

l a r g e s t  poss ib l e  source r a t e .  The locus (1 -2D/Dmax)Rmax vs D is s h o m  

max 

i n  Figure 1 along with R(D) f o r  a t y p i c a l  source and d i s t o r t i o n  measure. 

Subs t i t u t ing  (11) and ( 1 6 )  i n t o  (10) w e  have t h e  following 

Theorem 2 Consider a d i s c r e t e ,  memoryless and equiprobable l e t t e r  source 

and l e t  a d i s t o r t i o n  measure be given which genera tes  t h e  r a t e - d i s t o r t i o n  

funct ion ??(Dl assume t h a t  R ( D )  has -a  continuous first derivative. .  Let 

be t h e  maximum R = l og  121 be t h e  maximum encoding r a t e  and l e t  D 

average d i s t o r t i o n .  

a t  rate R by a de te rmin i s t i c  encoder r e a l i z i n g  a func t ion  f :  Z +. Y , 

then t h e  computational work W which is  required s a t i s f i e s  

max . max 2 

If t h e  source. i s  encoded with average d i s t o r t i o n  D 

N N  

N 
2 - r a ( R ,  D, N) 

where =(R, D ,  N) > 0 i f  N > N ( R ,  D) and 
0 

R(n)  < R < ( l  - 2D'D*"ax'Rmax 

(20) 

(21) 
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Also, l i m  a ( R ,  D ,  N) = B ( R ,  D) and B(R, D) > 0 5.f (21) 'is s a t i s f i e d .  
NJ-+c)o 

Proof The s u b s t i t u t i o n  of (11) and (16)  i n t o  (10) gives 

"But (18) implies  t h a t  R($) > 0 i f  (14)  is s a t i s f i e d  which it is by t h e  

assumption (21)  fo r  l a rge  N . Therefore ,  fo r  s u f f i c i e n t l y  l a r g e  N, 

a ( R ,  D,  N) > 0 . Q.E.D. 

We now show by example t h a t  w e  cannot improve s u b s t a n t i a l l y  upon t h e  

baund of (20).  Consider a source encoder f o r  a b ina ry ,  equiprobable ,  memory- 

less le t te r  source which is t h e  minimum dis tance  decoder of a Hamming code. 

Every b inary  sequence 
a 
z i s  a t  Hamming d is tance  a t  most one from a code 

work . L e t  t h e  d i s t o r t i o n  measure by the  Hamming metr ic .  Then R ( D )  = l-H(D), 

where H(D) 

D and 1 - D ,  and RiaX = 1, D = l / Z  and ( 2 1 )  becomes R <1-4D e A Hamming 

code of block length  N has  rate R(N) = 1-log (N+l)/N and t h e  average 

d i s t o r t i o n  using t h i s  code and decoder D(N) satisfies 

i s  t h e  entropy of a b inary  source with l e t t e r  p r o b a b i l i t i e s  of 

max 

2 

Hence, for  N > 15 , t h e  inequa l i ty  R < I-4D of (21) is s a t i s f i e d .  

The decode19 of a Hamming code c a l c u l a t e s  a syndrome and then  i d e n t i f i e s  

t h e  b i t  presumed t o  be i n  e r r o r  by equat ing t h e  syndrome with some row of 

the  code parity-check matr ix ,  It has been shown t h a t  t h e  decoder does a 

work W bounded &ove by a quan t i ty  which approaches 3N log2W when 2-input 

p r imi t ives  are used. 

improved for  l a rge  N at l a rge  encoding rates. 

7 

2 

Thus, t h e  lower bound. of (IO) cannot be s u b s t a n t i a l l y  
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We now t u r n  t o  t h e  f u r t h e r  bounding of computational work, for which 

5 w e  make use of bounds der ived by P i l c  e We assume t h a t  t h e  source is d i s -  

Crete and mernoryless charac te r ized  by t h e  l e t t e r  p r o b a b i l i t i e s  { P y  * * ¶PI] 

over t h e  source alphabet  Z , A d i s t o r t i o n  measure is given and a rate- 

d i s t o r t i o n  func t ion  R ( D )  is  def ined i n  terms of t h e  semi- invariant  moment 

. generat ing func t ion  W(S, p ,  g )  

where {gi, - -g . )  

and {d. . I  .is t h e  set  of values  assumed by the  function..  Then, S = S is  

chosen such t h a t  

a r e  p r o b a b i l i t i e s  over t h e  encoder output  a lphabet  Y 
7 

1 3  ' 0 

and we have 

is  t h e  minimizing p robab i l i t y  vec tor  g e P i l c  shows t h a t  subject 
go 

where 

t o  an approximation 

log* N 

c 1  I- O ( 1 ) l  
1 

D L D R +  Kf N (27)  

where O(1) decreases  t o  zero with inc reas ing  N e The approximation is 

explained on page 841 of [SI and has  been shown t o  be unnecessary when t h e  

source is doubly uniform, t h a t  is  when t h e  source l e t t e r s  are e q u i - p r o b a l e  

and t h e  matrix 

a re  permutations of a given row and column and 

{dij ,  1 < i < I ,  1 < j < J) i s  such t h a t  rows and columns 

I = J These condi t ions  

hold f o r  t h e  source and d i s t o r t i a n  function i n  t he  example given above. 
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Now so lv ing  (29) fo r  l a r g e  N t h a t  is for D near  D where 
R '  

R(DR) = R w e  have 
-log2 21Sol ( D  - DR) 

N > _  
21Sol(D - DR) (28) 

where both So and DR are implicit func t ions  of  t h e  encoding r a t e  R . 
Sjnce P i l c ' s  bounds apply s t r i c t l y  t o  doubly uniform sources ,  w e  restrict 

our p r i n c i p a l  r e s u l t  t o  t h i s  case. It  should be noted t h a t  P i l c ' s  lower 

bounds apply t o  t h e  d i s t o r t i o n  measure def ined i n  ( 6 ) .  

Theorem 3 - Consider a doubly unifo&n source  with r a t e - d i s t o r t i o n  func t ion  

be t h e  maxifnum average d i s f o r t i o n  and maximum and Rmax 

DR 

R ( D )  . L e t  Dmax 

encoding r a t e  and de f ine  

with a d e t e r m i n i s t i c  encoder with average d i s t o r t i o n  D an2 r a t e  R . Then, 

by R ( D R )  = R . Let t h e  source be encoded 

t h e  computational work requi red  t o  encode t h e  source s a t i s f i e s  

(29 

for D < D < D t E when 0 < E << 1 and a' ( R ,  D )  > 0 i f  R satisfies 

(21). Here S = S ( R )  is  t h e  parameter def ined by (25)  and it is assumed' 

t o  be bounded. 

R R 

0 0 

Proof a' (R, D> is t h e  func t ion  = ( R ;  D ,  N) with N rep laced  by t h e  

bound of (28) .  Clea r ly ,  for D near  DR , N is l a r g e  and Theorem 2 app l i e s .  

Q.E.D. 

3. Conclusions 
_1__11_ 

The c e n t r a l  ob jec t ive  of  source encoding with a f i d e l i T y  c r i t e r e o n  is 

t o  f i n d  an encoder which provides  a d i s to r t io r ,  nea r  t h e  minicum with t? small 

computational work. One might expect t h a t  decoders for er ror  co r rec t ing  

codes cculd be used s i n c e  -they par ' i i t i .on t h e i r  input  spaces i n t o  d i s j o i n t  sets,  
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as do source encoders 

those known decoding procedures which decode long codes of non-zero rates 

with a modest computational work also decode "with uncer ta in ty  ' I .  

they make no dec is ion  on many input  words; t h i s  is t r u e  of "bounded d is tance"  

This is an unrea l ized  ' expec ta t ion  p r imar i ly  because 

That i s ,  

decoders. 

volume of t h e  space of inpu t  words so t h a t  nea r ly  a l l  inpu t s  r e s u l t  i n  un- 

certainty. 

Unfortunately,  t hese  uncer ta in ty  s e t s  occupy near ly  a l l  of t h e  

This is not  a problem f o r  e r ro r - co r rec t ion  s i n c e  t h e  rece ived  

sequences are concentrated with high p r o b a b i l i t y  ou t s ide  t h i s  se t .  

I n  gene ra l ,  it is  a problem f o r  source encoders because i n  t h i s  case a l l  

sequences are o f t e n  equiprobable which means t h a t  e i t h e r  no ac t ion  can be 

taken on most source sequences o r  i f  t h e  same dec is ion  is always made, t hen ,  

t h e  average d i s t o r t i o n  w i l l  be v e q  l a r g e .  

The search fo r  good source encoders with a f i d e l i t y  c r i t e r e o n  goes 

There is some comfort i n  the  fact  t h a t  success  h e r e . i s  l i k e l y  t o  on., 

mate r i a l ly  a i d  i n  t h e  quest  f o r  e r ro r - co r rec t ing  decoders which decode with 

small computational work. 
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Appendix A 

Lemma L e t  A ( i ) ,  B ( i )  2 0 , 1 5 i 5 T and l e t  
I- 

I . T  
C A ( i )  2 A tl C B ( i )  5 B 

i=l i=l 

- Then, t h e r e  e x i s t s  i = i such t h a t  
0 

-- Proof L e t  Na be t h e  number of integers i such t h a t '  A ( i )  > 2A 

and Nb t h e  number of i n t e g e r s  i such t h a t  of B ( i )  > 2E . Then, 

I 1  C 5 ; A ( i )  > Na 2A 
i=l T 

and N < T/2 '. S i m i l a r l y  Nb < T/2 . The number of i n t e g e r s  i such 

t h a t  A ( i )  > 2A or B ( i )  > 2B is hounded above by N i Nb < T . There- 

f o r e ,  t h e  number of i n t e g e r s  i such t h a t  A ( i )  2A and B ( i )  5 2B is 

bounded below by T - N - N > - 0  and t h e r e  e x i s t s  an i t o  which t h e  

theorem a p p l i e s .  Q.E.D.  

a 

a 

a b  0 
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Appendix B 

Lemma Let t h e  r a t e - d i s t o r t i o n  func t ion  R(D) have a continuous first de- 

r iv i t t ive  and l e t  D(R) be t h e  inverse  of R(D) e Then, F(R) = (1 - a / D ( R ) )  

-. 

- R )  -t- R is decreasing i n  increas ing  R . '&ax 

Proof  The de r iva t ive  qf F(R) is 

Since D(R) i s  convex downward in -  R and D(R = 0 , it fol lows t h a t  max 
the  bracketed term i s  bounded above by 0 . Q.E.D. 



-14- 

References 

1. 

2. 

3. 

4. 

5, 

6. 

7. 

C. E .  Shannon, "Coding Theorems for a Discrete Source with a F i d e l i t y  
Cri tereon,"  IRE Nat iona l  Convention Record, P a r t  4 ,  pp. 142-163, 1959. 

J ,  E .  Savage, "The Complexity of Decoders-Part 11: Computational 
Work and Deocding T ime  , I 1  IEEE Transact ions on Information Theory , 
Vol. IT-17, N o .  1, January,  1971. 

J .  T e 'P inkston,  '"Encoding Independent Sample Information Sources ," 
M. I .T. Research L a b .  of E lec t ron ic s ,  Cambridge, Mass. , Tech. Rept . 
TR 462, October, 1967. 

T.  J ,  Goblick, "Coding for a Discrete Information Source with a D i s -  
t o r t i o n  Measure , I 1  Ph. D.  t h e s i s  Dept . of Electrical Engineering, M e ' I .  T .  
Cambridge, October,  1962. 

R. J. P i l c ,  "The Transmission Di s to r t ion  of a Source as a Function of 
the .  Encoding Block Length , ' I  B e l l  System Technical  Jou rna l ,  pp. 827-886 , 
July-August 1968. 

J .  E .  Savage, "Computational Work and T i m e ,  on F i n i t e  Machines , ' I  paper  
i n  prepara t ion .  

0 .  W. Sta ls t rom,  "The Complexity of Decoders f o r  I t e r a t e d  Hammifig codes," 
Report ,  Division of Engineering, B r o w n  Univers i ty ,  August 1969. 

JES/l jn  



max R 

D D max D /2 max 

Fig.  1 Rate Dis to r t ion  Function and Locus of Condition of Theorem 2 


